Abstract
Light-based 3D printing techniques represent powerful tools, enabling the precise fabrication of intricate objects with high resolution and control. An innovative addition to this set of printing techniques is Optical Fiber-Assisted Printing (OFAP) introduced in this manuscript. OFAP is a platform utilizing a LED-coupled optical fiber (LOF) which selectively crosslinks photopolymer resins. It allows on-the-fly change of parameters like light intensity and LOF velocity during fabrication, facilitating the creation of structures with progressive features and multi-material constructs layer-by-layer. An optimized formulation based on allyl-modified gelatin (gelAGE) with food dyes as photoabsorbers is introduced. Additionally, a novel gelatin-based biomaterial, alkyne-modified gelatin (gelGPE), featuring alkyne moieties, demonstrates near-visible light absorption thus fitting OFAP needs, paving the way for multifunctional hydrogels through thiol-yne click chemistry. Besides 2D patterning, OFAP is transferred to embedded 3D printing within a resin bath demonstrating the proof-of-concept as novel printing technology with potential applications in tissue engineering and biomimetic scaffold fabrication, offering rapid and precise freeform printing capabilities.
Publisher
Cold Spring Harbor Laboratory