Automated stratification of trauma injury severity across multiple body regions using multi-modal, multi-class machine learning models

Author:

Gao Jifan,Chen Guanhua,O’Rourke Ann P.,Caskey John,Carey Kyle,Oguss Madeline,Stey Anne,Dligach Dmitriy,Miller Timothy,Mayampurath Anoop,Churpek Matthew M.,Afshar Majid

Abstract

AbstractThe timely stratification of trauma injury severity can enhance the quality of trauma care but it requires intense manual annotation from certified trauma coders. There is a need to establish an automated tool to identify the severity of trauma injuries across various body regions. We gather trauma registry data from a Level I Trauma Center at the University of Wisconsin-Madison (UW Health) between 2015 and 2019. Our study utilizes clinical documents and structured electronic health records (EHR) variables linked with the trauma registry data to create two machine learning models with different approaches to representing text. The first one fuses concept unique identifiers (CUIs) extracted from free text with structured EHR variables, while the second one integrates free text with structured EHR variables. Both models demonstrate impressive performance in categorizing leg injuries, achieving high accuracy with macro-F1 scores of around 0.8. Additionally, they show considerable accuracy, with macro- F1 scores exceeding 0.6, in assessing injuries in the areas of the chest and head. Temporal validation is conducted to ensure the models’ temporal generalizability. We show in our variable importance analysis that the most important features in the model have strong face validity in determining clinically relevant trauma injuries.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3