Evoked oscillatory cortical activity during acute pain: Probing brain in pain by transcranial magnetic stimulation combined with electroencephalogram

Author:

De Martino Enrico,Casali Adenauer,Casarotto Silvia,Hassan Gabriel,Nascimento Couto Bruno Andry,Rosanova Mario,Graven-Nielsen Thomas,de Andrade Daniel Ciampi

Abstract

ABSTRACTTemporal dynamics of local cortical rhythms during acute pain remain largely unknown. The current study used a novel approach based on transcranial magnetic stimulation combined with electroencephalogram (TMS-EEG) to investigate evoked-oscillatory cortical activity during acute pain. Motor (M1) and dorsolateral prefrontal cortex (DLPFC) were probed by TMS, respectively, to record oscillatory power (event-related spectral perturbation and relative spectral power) and phase synchronization (inter-trial coherence) by 63 EEG channels during experimentally induced acute heat pain in 24 healthy participants. TMS-EEG was recorded before, during, and after noxious heat (Acute Pain condition) and non-noxious warm (Control condition), delivered in a randomized sequence. The main frequency bands (α, β1, and β2) of TMS-evoked potentials after M1 and DLPFC stimulation were recorded close to the TMS coil and remotely. Cold and heat pain thresholds were measured before TMS-EEG. Over M1, Acute pain decreased α-band oscillatory power locally and α-band phase synchronization remotely in parietal-occipital clusters compared with non-noxious warm (all P<0.05). The remote (parietal-occipital) decrease in α-band phase synchronization during Acute Pain correlated with the cold (P=0.001) and heat pain thresholds (P=0.023) and to local (M1) α-band oscillatory power decrease (P=0.024). Over DLPFC, Acute Pain only decreased β1-band power locally compared with non-noxious warm (P=0.015). Thus, evoked-oscillatory cortical activity to M1 stimulation is reduced by acute pain in central and parietal-occipital regions and correlated with pain sensitivity, in contrast to DLPFC, which had only local effects. This finding expands the significance of α and β band oscillations and may have relevance for pain therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3