Abstract
AbstractDNA methylation-based classification of brain tumors has emerged as a powerful and indispensable diagnostic technique. Initial implementations have used methylation microarrays for data generation, but different sequencing approaches are increasingly used. Most current classifiers, however, rely on a fixed methylation feature space, rendering them incompatible with other platforms, especially different flavors of DNA sequencing. Here, we describe crossNN, a neural network-based machine learning framework which can accurately classify tumor entities using DNA methylation profiles obtained from different platforms and with different epigenome coverage and sequencing depth. It outperforms other deep- and shallow machine learning models with respect to precision as well as simplicity and computational requirements while still being fully explainable. Validation in a large cohort of >1,900 tumors profiled using different microarray and sequencing platforms, including low-pass nanopore and targeted bisulfite sequencing, demonstrates the robustness and scalability of the model.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献