Multifaceted Roles of Histone Lysine Lactylation in Meiotic Gene Dynamics and Recombination

Author:

Zhang Xiaoyu,Liu Yan,Wang Ning

Abstract

AbstractMale germ cells, which are responsible for producing millions of genetically diverse sperm through meiosis in the testis, rely on lactate as their central energy metabolite. Recent study has revealed that lactate induces epigenetic modification in cells through histone lactylation, a post-translational modification involving the addition of lactyl groups to lysine residues on histones. Here we report dynamic histone lactylation at histone H4-lysine 5 (K5), -K8, and -K12 during meiosis prophase I in mouse spermatogenesis. By profiling genome-wide occupancy of histone H4-K8 lactylation (H4K8la), which peaks at zygotene, our data show that H4K8la mark is observed at the promoters of genes exhibiting active expression with Gene Ontology (GO) functions enriched for meiosis. Notably, our data also demonstrate that H4K8la is closely associated with recombination hotspots, where machinery involved in the processing DNA double-stranded breaks (DSBs), such as SPO11, DMC1, RAD51, and RPA2, is engaged. In addition, H4K8la was also detected at the meiosis-specific cohesion sites (marked by RAD21L and REC8) flanking the recombination hotspots. Collectively, our findings suggest that histone lactylation serves as a novel mechanism through which lactate regulates germ cell meiosis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3