Overloading And unpacKing (OAK) - droplet-based combinatorial indexing for ultra-high throughput single-cell multiomic profiling

Author:

Wu Bing,Bennett Hayley M.,Ye Xin,Sridhar Akshayalakshmi,Eidenschenk Celine,Everett Christine,Nazarova Evgeniya V.,Chen Hsu-Hsin,Kim Ivana K.,Deangelis Margaret,Owen Leah A.,Chen Cynthia,Lau Julia,Shi Minyi,Lund Jessica M.,Xavier-Magalhaes Ana,Patel Neha,Liang Yuxin,Modrusan Zora,Darmanis SpyrosORCID

Abstract

AbstractMultiomic profiling of single cells by sequencing is a powerful technique for investigating cellular diversity in complex biological systems. Although the existing droplet-based microfluidic methods have advanced single-cell sequencing, they produce a plethora of cell-free droplets and underutilize barcoding capacities due to their low cell concentration prerequisites. Meanwhile, combinatorial indexing on microplates can index cells in a more effective way; however, it requires time-consuming and laborious protocols involving multiple splitting and pooling steps. Addressing these constraints, we have developed “Overloading And unpacKing” (OAK). With reduced labor intensity, OAK can provide cost-effective multiomic profiling for hundreds of thousands of cells, offering detection sensitivity on par with commercial droplet-based methods. To demonstrate OAK’s versatility, we conducted single-cell RNA sequencing (scRNA-Seq) as well as joint single-nucleus RNA sequencing (snRNA-Seq) and single-nucleus Assay for Transposase Accessible Chromatin with sequencing (snATAC-Seq) using cell lines. We further showcased OAK’s performance on more complex samples, includingin vitrodifferentiated bronchial epithelial cells and primary retinal tissues. Finally, we examined transcriptomic responses of 408,000 melanoma cells across around 1,000 starting lineages over a 90-day treatment with a RAF inhibitor, belvarafenib. We discovered a rare cell population (0.12%) that underwent a sequence of transcriptomic changes, resulting in belvarafenib resistance. Ultra-high throughput, broad compatibility with diverse molecular modalities, high detection sensitivity, and simplified experimental procedures distinguish OAK from previous methods, and render OAK a powerful tool for large-scale analysis of molecular signatures, even for rare cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3