Author:
Khan Asim G.,Rojas-Montero Matías,González-Delgado Alejandro,Lopez Santiago C.,Fang Rebecca F.,Shipman Seth L.
Abstract
ABSTRACTRetrons are bacterial immune systems that use reverse transcribed DNA as a detector of phage infection. They are also increasingly deployed as a component of biotechnology. For genome editing, for instance, retrons are modified so that the reverse transcribed DNA (RT-DNA) encodes an editing donor. Retrons are commonly found in bacterial genomes; thousands of unique retrons have now been predicted bioinformatically. However, only a small number have been characterized experimentally. Here, we add substantially to the corpus of experimentally studied retrons. We synthesized >100 previously untested retrons to identify the natural sequence of RT-DNA they produce, quantify their RT-DNA production, and test the relative efficacy of editing using retron-derived donors to edit bacterial genomes, phage genomes, and human genomes. We add 62 new empirically determined, natural RT-DNAs, which are not predictable from the retron sequence alone. We report a large diversity in RT-DNA production and editing rates across retrons, finding that top performing editors outperform those used in previous studies, and are drawn from a subset of the retron phylogeny.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献