Biological insights from plasma proteomics of non-small cell lung cancer patients treated with immunotherapy

Author:

Bar Jair,Leibowitz Raya,Reinmuth Niels,Ammendola Astrid,Jacob Eyal,Moskovitz Mor,Levy-Barda Adva,Lotem Michal,Katzenelson Rivka,Agbarya Abed,Abu-Amna Mahmoud,Gottfried Maya,Harkovsky Tatiana,Wolf Ido,Tepper Ella,Loewenthal Gil,Yellin Ben,Brody Yehuda,Dahan Nili,Yanko Maya,Lahav Coren,Harel Michal,Shoval Shani Raveh,Elon Yehonatan,Sela Itamar,Dicker Adam P.,Shaked Yuval

Abstract

ABSTRACTIntroductionImmune checkpoint inhibitors have made a paradigm shift in the treatment of non-small cell lung cancer (NSCLC). However, clinical response varies widely and robust predictive biomarkers for patient stratification are lacking. Here, we characterize early on-treatment proteomic changes in blood plasma to gain a better understanding of treatment response and resistance.MethodsPre-treatment (T0) and on-treatment (T1) plasma samples were collected from 225 NSCLC patients receiving PD-1/PD-L1 inhibitor-based regimens. Plasma was profiled using aptamer-based technology to quantify approximately 7000 plasma proteins per sample. Proteins displaying significant fold changes (T1:T0) were analyzed further to identify associations with clinical outcomes. Bioinformatic analyses of upregulated proteins were performed to determine potential cell origins and enriched biological processes.ResultsThe levels of 142 proteins were significantly increased in the plasma of NSCLC patients following ICI-based treatments. Soluble PD-1 exhibited the highest increase, with a positive correlation to tumor PD-L1 status. Bioinformatic analysis of the ICI monotherapy dataset revealed a set of 30 upregulated proteins that formed a single, highly interconnected network with CD8A serving as a central hub, suggesting T cell activation during ICI treatment. Notably, the T cell-related network was detected regardless of clinical benefit. Lastly, circulating proteins of alveolar origin were identified as potential biomarkers of limited clinical benefit, possibly due to a link with cellular stress and lung damage.ConclusionsOur study provides insights into the biological processes activated during ICI-based therapy, highlighting the potential of plasma proteomics to identify mechanisms of therapy resistance and potential biomarkers for outcome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3