An assessment of the value of deep neural networks in genetic risk prediction for surgically relevant outcomes

Author:

Christensen Mathias AORCID,Sigurdsson Arnór,Bonde Alexander,Rasmussen Simon,Ostrowski Sisse RORCID,Nielsen Mads,Sillesen MartinORCID

Abstract

AbstractIntroductionPostoperative complications affect up to 15% of surgical patients constituting a major part of the overall disease burden in a modern healthcare system. While several surgical risk calculators have been developed, none have so far been shown to decrease the associated mortality and morbidity. Combining deep neural networks and genomics with the already established clinical predictors may hold promise for improvement.MethodsThe UK Biobank was utilized to build linear and deep learning models for the prediction of surgery relevant outcomes. An initial GWAS for the relevant outcomes was initially conducted to select the Single Nucleotide Polymorphisms for inclusion in the models. Model performance was assessed with Receiver Operator Characteristics of the Area Under the Curve and optimum precision and recall. Feature importance was assessed with SHapley Additive exPlanations.ResultsModels were generated for atrial fibrillation, venous thromboembolism and pneumonia as genetics only, clinical features only and a combined model. For venous thromboembolism, the ROC-AUCs were 59.6% [59.0%-59.7%], 63.4% [63.2%-63.4%] and 66.1% [65.7%-66.1%] for the linear models and 60.0% [57.8%-61.8%], 63.2% [61.2%-65.0%] and 65.4% [63.6%-67.2%] for the deep learning SNP, clinical and combined models, respectively. For atrial fibrillation, the ROC-AUCs were 60.9% [60.6%-61.0%], 78.7% [78.7%-78.7%] and 80.1% [80.0%-80.1%] for the linear models and 59.9% [.6%-61.3%], 78.8% [77.8%-79.8%] and 79.4% [78.8%-80.5%] for the deep learning SNP, clinical and combined models, respectively. For pneumonia, the ROC-AUCs were 57.3% [56.5%-57.4%], 69.2% [69.1%-69.2%] and 70.5% [70.2%-70.6%] for the linear models and 55.5% [54.1%-56.9%], 69.7% [.5%-70.8%] and 69.9% [68.7%-71.0%] for the deep learning SNP, clinical and combined models, respectively.ConclusionIn this report we presented linear and deep learning predictive models for surgery relevant outcomes. Overall, predictability was similar between linear and deep learning models and inclusion of genetics seemed to improve accuracy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3