Aged Tendons Exhibit Altered Mechanisms of Strain-Dependent Extracellular Matrix Remodeling

Author:

Aggouras Anthony N.ORCID,Stowe Emma J.ORCID,Mlawer Samuel J.,Connizzo Brianne K.ORCID

Abstract

ABSTRACTAging is a primary risk factor for degenerative tendon injuries, yet the etiology and progression of this degeneration is poorly understood. While aged tendons have innate cellular differences that support a reduced ability to maintain mechanical tissue homeostasis, the response of aged tendons to altered levels of mechanical loading has not yet been studied. To address this question, we subjected young and aged murine flexor tendon explants to various levels ofin vitrotensile strain. We first compared the effect of static and cyclic strain on matrix remodeling in young tendons, finding that cyclic strain is optimal for studying remodelingin vitro. We then investigated the remodeling response of young and aged tendon explants after 7 days of varied mechanical stimulus (stress-deprivation, 1%, 3%, 5%, or 7% cyclic strain) via assessment of tissue composition, biosynthetic capacity, and degradation profiles. We hypothesized that aged tendons would show muted adaptive responses to changes in tensile strain and exhibit a shifted mechanical setpoint, at which the remodeling balance is optimal. Interestingly, we found 1% cyclic strain best maintains native physiology while promoting ECM turnover for both age groups. However, aged tendons display fewer strain-dependent changes, suggesting a reduced ability to adapt to altered levels of mechanical loading. This work has significant impact in understanding the regulation of tissue homeostasis in aged tendons, which can inform clinical rehabilitation strategies for treating elderly patients.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. In vivo human tendon mechanical properties

2. Heterogeneous Loading of the Human Achilles Tendon In Vivo

3. Human Tendon Adaptation in Response to Mechanical Loading: A Systematic Review and Meta-Analysis of Exercise Intervention Studies on Healthy Adults;Sports Medicine - Open,2015

4. Genetic Response of Rat Supraspinatus Tendon and Muscle to Exercise

5. Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3