Author:
You Youngki,Sarkar Soumyadeep,Deiter Cailin,Elliott Emily C.,Nicora Carrie D.,Mirmira Raghavendra G.,Sussel Lori,Nakayasu Ernesto S.
Abstract
AbstractType 1 diabetes (T1D) results from the autoimmune destruction of the insulin producing β cells of the pancreas. Omega-3 fatty acids protect β cells and reduce the incident of T1D. However, how omega-3 fatty acids act on β cells is not well understood. We have shown that omega-3 fatty acids reduce pro-inflammatory cytokine-mediated β-cell apoptosis by upregulating the expression of the ADP-ribosylhydrolase ARH3. Here, we further investigate the β-cell protection mechanism by ARH3 by performing siRNA of its geneAdprhl2in MIN6 insulin-producing cells followed by treatment with a cocktail of the pro-inflammatory cytokines IL-1β + IFN-γ + TNF-α, and proteomics analysis. ARH3 regulated proteins from several pathways related to the nucleus (splicing, RNA surveillance and nucleocytoplasmic transport), mitochondria (metabolic pathways) and endoplasmic reticulum (protein folding). ARH3 also regulated the levels of cytokine-signaling proteins related to the antigen processing and presentation, and chemokine-signaling pathway. We further studied the role of ARH in regulating the chemokine CXCL9. We confirmed that ARH3 reduces the cytokine-induced expression of CXCL9 by ELISA. We also found that CXCL9 expression is regulated by omega-3 fatty acids. In conclusion, we showed that omega-3 fatty acids regulate CXCL9 expression via ARH3, which might have a role in protecting β cells from immune attack and preventing T1D development.
Publisher
Cold Spring Harbor Laboratory