Progressive engagement of SST+ interneurons via Elfn1 regulates the barrel-septa response identity in the somatosensory cortex of mice

Author:

Argunşah Ali ÖzgürORCID,Stachniak Tevye Jason,Yang Jenq-Wei,Cai Linbi,Kanatouris George,Karayannis Theofanis

Abstract

AbstractThe vibrissae system of rodents, akin to human hands and fingers, provides somatosensory information coming from individual whiskers for object exploration and recognition. Just as separated digits enhance somatosensation in humans, the ability of mice to sense objects through multiple whiskers in segregated streams is crucial. The segregation begins at the level of the whiskers and is maintained through their precise somatotopic organization in the Brainstem→ Thalamus→ Cortex axis, culminating in the so-called barrels and the in-between “spaces” called septa. Here, by performingin-vivosilicon probe recordings simultaneously in the barrel and septa domains in mice upon repeated 10Hz single and multi-whisker stimulation, we identify and characterize a temporal divergence in the spiking activity between these domains. Further, through genetic fate-mapping, we reveal that cortical SST+ and VIP+ inhibitory neurons show a layer-dependent differential preference in septa versus barrel domains. Utilizing a genetic manipulation that affects the temporal facilitation dynamics onto only these two inhibitory cell classes, we largely abolish the temporal response divergence between the two cortical domains. Finally, usingin-vivoviral tracing, whole-brain clearing and imaging, we show a differential barrel and septa projection pattern to cortical regions S2 and M1. We hence reveal that local temporally engaging cortical inhibition provided by SST+ neurons contribute to the functional segregation of barrel and septa domains and potentially their downstream targets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3