Temporal changes in SARS-CoV-2 clearance kinetics and the optimal design of antiviral pharmacodynamic studies: an individual patient data meta-analysis of a randomised, controlled, adaptive platform study (PLATCOV)

Author:

Wongnak PhrutsamonORCID,Schilling William HKORCID,Jittamala PodjaneeORCID,Boyd SimonORCID,Luvira ViravarnORCID,Siripoon TanayaORCID,Ngamprasertchai ThundonORCID,Batty Elizabeth MORCID,Singh Shivani,Kouhathong Jindarat,Pagornrat Watcharee,Khanthagan Patpannee,Hanboonkunupakarn BorimasORCID,Poovorawan KittiyodORCID,Mayxay MayfongORCID,Chotivanich KesineeORCID,Imwong MallikaORCID,Pukrittayakamee SasithonORCID,Ashley Elizabeth AORCID,Dondorp Arjen MORCID,Day Nicholas PJ,Teixeira Mauro MORCID,Piyaphanee WatcharapongORCID,Phumratanaprapin WeerapongORCID,White Nicholas JORCID,Watson James AORCID

Abstract

AbstractBackgroundEffective antiviral drugs prevent hospitalisation and death in COVID-19. Antiviral efficacy can be assessed efficiently in-vivo by measuring rates of SARS-CoV-2 clearance estimated from serial viral genome densities quantitated in nasopharyngeal or oropharyngeal swab eluates. We carried out an individual patient data meta-analysis of unblinded arms in the PLATCOV platform trial to characterise changes in viral clearance kinetics and infer optimal design and interpretation of antiviral pharmacometric evaluations. PLATCOV is registered at ClinicalTrials.gov,NCT05041907.MethodsSerial viral density data were analysed from symptomatic, previously healthy, adult patients (within 4 days of symptom onset) enrolled in a large multicentre randomised adaptive pharmacodynamic platform trial (PLATCOV) comparing antiviral interventions for SARS-CoV-2. Viral clearance rates over one week were estimated under a hierarchical Bayesian linear model with B-splines used to characterise temporal changes in enrolment viral densities and clearance rates. Bootstrap re-sampling was used to assess the optimal duration of follow-up for pharmacometric assessment, where optimal is defined as maximising the expected z-score when comparing effective antivirals with no treatment.ResultsBetween 29 September 2021 and 20 October 2023, 1262 patients were randomised. Unblinded data were available from 800 patients (16,818 oropharyngeal viral qPCR measurements) of whom 63% (504/800) were female. 98% (783/800) had received at least one vaccine dose and over 88% (703/800) were fully vaccinated. SARS-CoV-2 viral clearance was biphasic (bi-exponential). The first phase (α) was accelerated by effective interventions. For all the effective interventions studied, maximum discriminative power (maximum expected z-score) was obtained when evaluating serial data from the first 5 days after enrolment. Over the two-year period studied, median viral clearance half-lives estimated over 7 days have shortened from 16.6 hours (interquartile range [IQR]: 15.3 to 18.2) in September 2021 to 9.2 hours (IQR: 8.0 to 10.6) in October 2023 in patients receiving no antiviral drugs, equivalent to a relative reduction of 44% [95% credible interval (CrI): 19 to 64%]. A parallel trend was observed in treated patients. In the 158 patients randomised to ritonavir-boosted nirmatrelvir (3,380 qPCR measurements), the median viral clearance half-life declined from 6.4 hours (IQR: 5.7 to 7.3) in June 2022 to 4.8 hours (IQR: 4.2 to 5.5) in October 2023, a relative reduction of 26% [95%CrI: –4 to 42%].ConclusionsSARS-CoV-2 viral clearance kinetics in symptomatic vaccinated individuals have accelerated substantially over the past two years. Antiviral efficacy in COVID-19 can now be assessed efficiently in-vivo using serial qPCRs from duplicate oropharyngeal swab eluates taken daily for 5 days after drug administration.FundingWellcome Trust Grant ref: 223195/Z/21/Z through the COVID-19 Therapeutics Accelerator.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3