Impact of occluder device configurations in in-silico left atrial hemodynamics for the analysis of device-related thrombus

Author:

Albors CarlosORCID,Mill JordiORCID,Olivares Andy L.ORCID,Iriart XavierORCID,Cochet HubertORCID,Camara OscarORCID

Abstract

AbstractLeft atrial appendage occlusion devices (LAAO) are a feasible alternative for non-valvular atrial fibrillation (AF) patients at high risk of thromboembolic stroke and contraindication to antithrombotic therapies. However, optimal LAAO device configurations (i.e., size, type, location) remain unstandardized due to the large anatomical variability of the left atrial appendage (LAA) morphology, leading to a 4-6% incidence of device-related thrombus (DRT). In-silico simulations have the potential to assess DRT risk and identify the key factors, such as suboptimal device positioning. This work presents fluid simulation results computed on 20 patient-specific left atrial geometries, analysing different commercially available LAAO occluders, including plug-type and pacifier-type devices. In addition, we explored two distinct device positions: 1) the real post-LAAO intervention configuration derived from follow-up imaging; and 2) one covering the pulmonary ridge if it was not achieved during the implantation (13 out of 20). In total, 33 different configurations were analysed. In-silico indices indicating high risk of DRT (e.g., low blood flow velocities and flow complexity around the device) were combined with particle deposition analysis based on a discrete phase model. The obtained results revealed that covering the pulmonary ridge with the LAAO device may be one of the key factors to prevent DRT. Moreover, disk-based devices exhibited enhanced adaptability to various LAA morphologies and, generally, demonstrated a lower risk of abnormal events after LAAO implantation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3