Re-assessing thermal response of schistosomiasis transmission risk: evidence for a higher thermal optimum than previously predicted

Author:

Aslan Ibrahim Halil,Pourtois Julie D.,Chamberlin Andrew J.,Mitchell Kaitlyn R.,Mari Lorenzo,Lwiza Kamazima M.,Wood Chelsea L.,Mordecai Erin A.,Yu Ao,Tuan Roseli,Sanches Palasio Raquel Gardini,Monteiro Antônio M.V.,Kirk Devin,Athni Tejas S.,Sokolow Susanne H.,N’Goran Eliezer K.,Diakite Nana R.,Ouattara Mamadou,Gatto Marino,Casagrandi Renato,Little David C.,Ozretich Reed W.,Norman Rachel,Allan Fiona,Brierley Andrew S.,Liu Ping,Pereira Thiago A.,De Leo Giulio A.

Abstract

AbstractThe geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis’ thermal optimum at 21.7 °C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages ofS. mansoniandS. haematobiumand their obligate host snails, i.e.,Biomphalariaspp. andBulinusspp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission ofS. mansoniandS. haematobiumrange between 23.1-27.3 °C and 23.6-27.9 °C (95 % CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.Authors’ summaryIn this research, we explored the complex interplay between temperature and the transmission risk of schistosomiasis, a parasitic disease currently affecting over two hundred million people, predominantly in SSA. We developed a novel mathematical model accounting for the multiple positive and negative ways temperature affects the free-living stages of the parasite and its obligate, non-human host, i.e., specific species of freshwater snails. Our models show that schistosomiasis transmission risk peaks at temperatures 1-6°C higher than previously estimated. This indicates that the impact of climate change on schistosomiasis transmission might be more extensive than previously thought, affecting a wide geographic range where mean annual temperatures are currently below the optimal temperature. Our model projections are consistent with the observed temperatures in locations of SSA where schistosomiasis is endemic and data on infection prevalence in the human population are available. These findings suggest that the current climate is conducive to schistosomiasis transmission, and future warming could escalate the risk further, emphasizing the need for targeted interventions in these regions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3