A rule-based multiscale model of hepatic stellate cell plasticity: critical role of the inactivation loop in fibrosis progression

Author:

Bougueon Matthieu,Legagneux Vincent,Hazard Octave,Bomo Jeremy,Siegel Anne,Feret Jérôme,Théret NathalieORCID

Abstract

AbstractHepatic stellate cells (HSC) are the source of extracellular matrix (ECM) whose overproduction leads to fibrosis, a condition that impairs liver functions in chronic liver diseases. Understanding the dynamics of HSCs will provide insights needed to develop new therapeutic approaches. Few models of hepatic fibrosis have been proposed, and none of them include the heterogeneity of HSC phenotypes recently highlighted by single-cell RNA sequencing analyses. Here, we developed rule-based models to study HSC dynamics during fibrosis progression and reversion. We used the Kappa graph rewriting language, for which we used tokens and counters to overcome temporal explosion. HSCs are modeled as agents that present seven physiological cellular states and that interact with (TGFβ1) molecules which regulate HSC activation and the secretion of type I collagen, the main component of the ECM. Simulation studies revealed the critical role of the HSC inactivation process during fibrosis progression and reversion. While inactivation allows elimination of activated HSCs during reversion steps, reactivation loops of inactivated HSCs (iHSCs) are required to sustain fibrosis. Furthermore, we demonstrated the model’s sensitivity to (TGFβ1) parameters, suggesting its adaptability to a variety of pathophysiological conditions for which levels of (TGFβ1) production associated with the inflammatory response differ. Using new experimental data from a mouse model of CCl4-induced liver fibrosis, we validated the predicted ECM dynamics. Our model also predicts the accumulation of iHSCs during chronic liver disease. By analyzing RNA sequencing data from patients with non-alcoholic steatohepatitis (NASH) associated with liver fibrosis, we confirmed this accumulation, identifying iHSCs as novel markers of fibrosis progression. Overall, our study provides the first model of HSC dynamics in chronic liver disease that can be used to explore the regulatory role of iHSCs in liver homeostasis. Moreover our model can also be generalized to fibroblasts during repair and fibrosis in other tissues.Author summaryChronic liver diseases (CLDs) are associated with the development of fibrosis which is characterized by an abnormal deposition of extracellular matrix (ECM) leading to severe liver dysfunction. Hepatic stellate cells (HSCs) are key players in liver fibrosis driving ECM remodeling. However numerous biological processes are involved including HSC activation, proliferation, differentiation and inactivation and novel computational modeling is necessary to integrate such complex dynamics. Here, we used the Kappa graph rewriting language to develop the first rule-based model describing the HSCs dynamics during liver fibrosis and its reversion. Simulation analyses enabled us to demonstrate the critical role of the HSC inactivation loop in the development of liver fibrosis, and to identify inactivated HSCs as potential new markers of fibrosis progression.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3