High-dimensional cortical signals reveal rich bimodal and working memory-like representations among S1 neuron populations

Author:

Kristensen Sofie S.,Kesgin Kaan,Jörntell Henrik

Abstract

SummaryComplexity is important for flexibility of natural behavior and for the remarkably efficient learning of the brain. Here we assessed the signal complexity among neuron populations in somatosensory cortex (S1). To maximize our chances of capturing population level signal complexity, we used highly repeatable resolvable visual, tactile and visuo-tactile inputs and neuronal unit activity recorded at high temporal resolution. We found the state space of the spontaneous activity to be extremely high-dimensional in S1 populations. Their processing of tactile inputs was profoundly modulated by visual inputs and even fine nuances of visual input patterns were separated. Moreover, the dynamic activity states of the S1 neuron population signaled the preceding specific input long after the stimulation had terminated, i.e. resident information that could be a substrate for a working memory. Hence, the recorded high dimensional representations carried rich multimodal and internal working memory-like signals supporting high complexity in cortical circuitry operation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3