Eliminating the Missing Cone Challenge through Innovative Approaches

Author:

Gillman CodyORCID,Bu GuanhongORCID,Danelius EmmaORCID,Hattne JohanORCID,Nannenga BrentORCID,Gonen TamirORCID

Abstract

ABSTRACTMicrocrystal electron diffraction (MicroED) has emerged as a powerful technique for unraveling molecular structures from microcrystals too small for X-ray diffraction. However, a significant hurdle arises with plate-like crystals that consistently orient themselves flat on the electron microscopy grid. If, as is typically the case, the normal of the plate correlates with the axes of the crystal lattice, the crystal orientations accessible for measurement are restricted because the grid cannot be arbitrarily rotated. This limits the information that can be acquired, resulting in a missing cone of information. We recently introduced a novel crystallization strategy called suspended drop crystallization and proposed that this method could effectively address the challenge of preferred crystal orientation. Here we demonstrate the success of the suspended drop crystallization approach in eliminating the missing cone in two samples that crystallize as thin plates: bovine liver catalase and the COVID-19 main protease (Mpro). This innovative solution proves indispensable for crystals exhibiting preferred orientations, unlocking new possibilities for structure determination by MicroED.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3