Abstract
The study explores the individual size distribution (ISD) pattern in ecological communities, characterized by a negative correlation between individual body size and abundance (N ∼ Mλ). The parameter λ denotes the rate of decline in relative abundance from small to large individuals. Despite known influences of temperature and resource availability on body size, their effects on λ remain diverse. Leveraging data from 2.4 million individual body sizes in continental freshwater streams, the research the hypothesis that λ varies as a function of temperature and resource supply. Surprisingly, despite varied environmental conditions and complete species turnover, minimal variation in λ (mean = −1.2, sd = 0.04) was observed, with no discernible impact from temperature or resource supply. The unexpected λ value of −1.2 suggests a higher-than-expected relative abundance of large individuals, challenging assumptions of metabolic scaling at 0.75 and implying large subsidy inputs to large predators. Simulation and mesocosm experiments support a metabolic scaling coefficient of ∼0.4 for freshwater macroinvertebrates. The findings underscore remarkable consistency of individual size distributions in freshwater streams, likely driven by shallow metabolic scaling and large subsidies to large consumers.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bayesian hierarchical modelling of size spectra;Methods in Ecology and Evolution;2024-03-20