Structure and function of the Si3 insertion integrated into the trigger loop/helix of cyanobacterial RNA polymerase

Author:

Zuhaib Qayyum M.,Imashimizu Masahiko,Leanca Miron,Vishwakarma Rishi K.,Riaz-Bradley Amber,Yuzenkova Yulia,Murakami Katsuhiko S.

Abstract

AbstractCyanobacteria and evolutionarily related chloroplasts of algae and plants possess unique RNA polymerases (RNAPs) with characteristics that distinguish from canonical bacterial RNAPs. The largest subunit of cyanobacterial RNAP (cyRNAP) is divided into two polypeptides, β’1 and β’2, and contains the largest known lineage-specific insertion domain, Si3, located in the middle of the trigger loop and spans approximately half of the β’2 subunit. In this study, we present the X-ray crystal structure of Si3 and the cryo-EM structures of the cyRNAP transcription elongation complex plus the NusG factor with and without incoming nucleoside triphosphate (iNTP) bound at the active site. Si3 has a well-ordered and elongated shape that exceeds the length of the main body of cyRNAP, fits into cavities of cyRNAP and shields the binding site of secondary channel-binding proteins such as Gre and DksA. A small transition from the trigger loop to the trigger helix upon iNTP binding at the active site results in a large swing motion of Si3; however, this transition does not affect the catalytic activity of cyRNAP due to its minimal contact with cyRNAP, NusG or DNA. This study provides a structural framework for understanding the evolutionary significance of these features unique to cyRNAP and chloroplast RNAP and may provide insights into the molecular mechanism of transcription in specific environment of photosynthetic organisms.Significance statementCellular RNA polymerase (RNAP) carries out RNA synthesis and proofreading reactions utilizing a mobile catalytic domain known as the trigger loop/helix. In cyanobacteria, this essential domain acquired a large Si3 insertion during the course of evolution. Despite its elongated shape and large swinging motion associated with the transition between the trigger loop and helix, Si3 is effectively accommodated within cyRNAP, with no impact on the fundamental functions of the trigger loop. Understanding the significance of Si3 in cyanobacteria and chloroplasts is expected to reveal unique transcription mechanism in photosynthetic organisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3