Rapid proteome-wide prediction of lipid-interacting proteins through ligand-guided structural genomics

Author:

Chou Jonathan Chiu-Chun,Decosto Cassandra M.,Chatterjee Poulami,Dassama Laura M. K.

Abstract

AbstractLipids are primary metabolites that play essential roles in multiple cellular pathways. Alterations in lipid metabolism and transport are associated with infectious diseases and cancers. As such, proteins involved in lipid synthesis, trafficking, and modification, are targets for therapeutic intervention. The ability to rapidly detect these proteins can accelerate their biochemical and structural characterization. However, it remains challenging to identify lipid binding motifs in proteins due to a lack of conservation at the amino acids level. Therefore, new bioinformatic tools that can detect conserved features in lipid binding sites are necessary. Here, we presentStructure-basedLipid-interactingPocketPredictor (SLiPP), a structural bioinformatics algorithm that uses machine learning to detect protein cavities capable of binding to lipids in experimental and AlphaFold-predicted protein structures. SLiPP, which can be used at proteome-wide scales, predicts lipid binding pockets with an accuracy of 96.8% and a F1 score of 86.9%. Our analyses revealed that the algorithm relies on hydrophobicity-related features to distinguish lipid binding pockets from those that bind to other ligands. Use of the algorithm to detect lipid binding proteins in the proteomes of various bacteria, yeast, and human have produced hits annotated or verified as lipid binding proteins, and many other uncharacterized proteins whose functions are not discernable from sequence alone. Because of its ability to identify novel lipid binding proteins, SLiPP can spur the discovery of new lipid metabolic and trafficking pathways that can be targeted for therapeutic development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3