COFFEE: Consensus Single Cell-Type Specific Inference for Gene Regulatory Networks

Author:

Lodi Musaddiq K,Chernikov Anna,Ghosh Preetam

Abstract

AbstractThe inference of gene regulatory networks (GRNs) is crucial to understanding the regulatory mechanisms that govern biological processes. GRNs may be represented as edges in a graph, and hence have been inferred computationally for scRNA-seq data. A wisdom of crowds approach to integrate edges from several GRNs to create one composite GRN has demonstrated improved performance when compared to individual algorithm implementations on bulk RNA-seq and microarray data. In an effort to extend this approach to scRNA-seq data, we present COFFEE (COnsensus single cell-type speciFic inFerence for gEnE regulatory networks), a Borda voting based consensus algorithm that integrates information from 10 established GRN inference methods. We conclude that COFFEE has improved performance across synthetic, curated and experimental datasets when compared to baseline methods. Additionally, we show that a modified version of COFFEE can be leveraged to improve performance on newer cell-type specific GRN inference methods. Overall, our results demonstrate that consensus based methods with pertinent modifications continue to be valuable for GRN inference at the single cell level.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3