Hybrid cancer stem cells utilise vascular tracks for collective streaming invasion in a metastasis-on-a-chip device

Author:

Scemama Alice,Lunetto Sophia,Tailor Artysha,Di Cio Stefania,Ambler Leah,Coetzee Abigail,Cottom Hannah,Khurram Syed Ali,Gautrot Julien,Biddle AdrianORCID

Abstract

AbstractCancer stem cells (CSCs) drive cancer metastatic dissemination. They do not do so in a vacuum, and the important influence of the tumour microenvironment (TME) on metastatic dissemination is becoming increasingly recognised. Therapeutic targeting of CSC-TME interactions may be a promising route to suppression of tumour metastasis. However, we must first understand how interactions with the TME influence CSC metastatic dissemination. To achieve this understanding, there is a need for experimental models that enable the analysis of dynamic interactions at single cell resolution within a complex environment. To this end, we utilise a metastasis-on-a-chip device to produce a 3Din vitromodel of CSC interaction with a developing microvasculature, that is amenable to precise imaging and real time studies at single cell resolution. We show that the invasive phenotype of oral squamous cell carcinoma (OSCC) cells is markedly altered when in proximity to a microvasculature, with a switch to a hybrid CSC phenotype that undergoes collective streaming invasion. Mechanistically, ECM compression by the developing vasculature creates an environment that is refractory to cancer invasion, whilst leaving abandoned vascular tracks that can be utilised by hybrid CSCs for collective streaming invasion. Human tissue studies identify streaming invasion in association with vascularised regions in OSCC specimens. These findings elucidate the influence of the vasculature on CSC metastatic dissemination in OSCC, and the role of hybrid CSC invasion plasticity in overcoming this TME constraint.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3