Med12 cooperates with multiple differentiation signals to enhance embryonic stem cell plasticity

Author:

Fernkorn MaxORCID,Schröter ChristianORCID

Abstract

AbstractCell differentiation results from coordinated changes in gene transcription in response to combinations of signals. FGF, Wnt, and mTOR signals regulate the differentiation of pluripotent mammalian cells towards embryonic and extraembryonic lineages, but how these signals cooperate with general transcriptional regulators is not fully resolved. Here, we report a genome-wide CRISPR screen that reveals both signaling components and general transcriptional regulators for differentiation-associated gene expression in mESCs. Focusing on the Mediator subunitMed12as one of the strongest hits in the screen, we show that it regulates gene expression in parallel to FGF and mTOR signals. Loss ofMed12is compatible with differentiation along both the embryonic epiblast and the extraembryonic primitive endoderm lineage, but pluripotency transitions are slowed down, and the transcriptional separation between epiblast and primitive endoderm identities is enhanced inMed12-mutant cells. These cellular phenotypes correlate with reduced biological noise upon loss ofMed12. These findings suggest thatMed12regulates cellular plasticity through the priming of transcriptional changes during differentiation, thereby modulating the effects of a broad range of signals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3