LSD Modulates Proteins Involved in Cell Proteostasis, Energy Metabolism and Neuroplasticity in Human Brain Organoids

Author:

Costa Marcelo N.ORCID,Goto-Silva Livia,Nascimento Juliana M.ORCID,Domith Ivan,Karmirian KarinaORCID,Feilding Amanda,Trindade PabloORCID,Martins-de-Souza Daniel,Rehen Stevens K.ORCID

Abstract

ABSTRACTThe effects of psychedelics encompass modulation of subjective experience, neuronal plasticity, brain activity and connectivity, constituting a complex phenomenon. Underlying these effects, molecular changes at the protein level are expected. Proteomic analysis of human brain cells can elicit a comprehensive view of proteins and biological processes regulated within the central nervous system. To explore the molecular pathways influenced by lysergic acid diethylamide (LSD), we utilized mass spectrometry-based proteomics on human brain organoids. This approach allowed for an in-depth analysis of the proteomic alterations induced by LSD, providing insights into its effects at the molecular level within a brain-like environment. Alterations in proteostasis and energy metabolism, which are required for neural plasticity, were observed. Alongside, we identified changes in protein synthesis, folding, autophagy, and proteasomal degradation, as well as in glycolysis, oxidative phosphorylation, cytoskeleton regulation, and neurotransmitter release, providing a comprehensive view of the regulation of cellular process by LSD exposure. Furthermore, the ability of LSD to induce plasticity in human brain cells was corroborated through complementaryin vitroexperiments focusing on neurite outgrowth. This study sheds light on the specific proteins that LSD influences, thereby enhancing neurite extension and plasticity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3