Diagnostically distinct resting state fMRI energy distributions: A subject-specific maximum entropy modeling study

Author:

Theis Nicholas,Bahuguna JyotikaORCID,Rubin Jonathan E,Cape Joshua RORCID,IYENGAR SATISHORCID,Prasad Konasale MORCID

Abstract

Objective Existing neuroimaging studies of psychotic and mood disorders have reported brain activation differences (first-order properties) and altered pairwise correlation based functional connectivity (second-order properties). However, both approaches have certain limitations that can be overcome by integrating them in a pairwise maximum entropy model (MEM) that better represents a comprehensive picture of fMRI signal patterns and provides a system-wide summary measure called energy. This study examines the applicability of individual-level MEM for psychiatry and identifies image-derived model coefficients related to model parameters. Method MEMs are fit to resting state fMRI data from each individual with schizophrenia/schizoaffective disorder, bipolar disorder, and major depression (n=132) and demographically matched healthy controls (n=132) from the UK Biobank to different subsets of the default mode network (DMN) regions. Results The model satisfactorily explained observed brain energy state occurrence probabilities across all participants, and model parameters were significantly correlated with image-derived coefficients for all groups. Within clinical groups, averaged energy level distributions were higher in schizophrenia/schizoaffective disorder but lower in bipolar disorder compared to controls for both bilateral and unilateral DMN. Major depression energy distributions were higher compared to controls only in the right hemisphere DMN. Conclusions Diagnostically distinct energy states suggest that probability distributions of temporal changes in synchronously active nodes may underlie each diagnostic entity. Subject-specific MEMs allow for factoring in the individual variations compared to traditional group-level inferences, offering an improved measure of biologically meaningful correlates of brain activity that may have potential clinical utility.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3