Muscle-controlled physics simulations of the emu (a large running bird) resolve grounded running paradox

Author:

van Bijlert Pasha A.ORCID,van Soest A.J. “Knoek”,Schulp Anne S.ORCID,Bates Karl T.ORCID

Abstract

AbstractHumans and birds utilize very different running styles. Unlike humans, birds adopt “grounded running” at intermediate speeds – a running gait where at least one foot is always in contact with the ground. Avian grounded running is paradoxical: animals tend to minimize locomotor energy expenditure, but birds prefer grounded running despite incurring higher energy costs. Using predictive gait simulations of the emu (Dromaius novaehollandiae), we resolve this paradox by demonstrating that grounded running represents an energetic optimum for birds. Our virtual experiments decoupled biomechanically relevant anatomical features that cannot be isolated in a real bird. The avian body plan prevents (near) vertical leg postures while running, making the running style used by humans impossible. Under this anatomical constraint, grounded running is optimal if the muscles produce the highest forces in crouched postures, as is true in most birds. Anatomical similarities between birds and non-avian dinosaurs suggest that, as a behavior, avian grounded running first evolved within non-avian theropods.

Publisher

Cold Spring Harbor Laboratory

Reference87 articles.

1. R. M. Alexander, Principles of Animal Locomotion (Princeton University Press, Princeton NJ, 2006).

2. Gait and the energetics of locomotion in horses

3. Energetics and mechanics of terrestrial locomotion;I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. Exp. Biol,1982

4. Energetics of running: a new perspective

5. Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3