Deciphering the diversity and sequence of extracellular matrix and cellular spatial patterns in lung adenocarcinoma using topological data analysis

Author:

Yoon Iris H.R.,Jenkins Robert,Colliver EmmaORCID,Zhang Hanyun,Novo DavidORCID,Moore David,Ramsden Zoe,Rullan Antonio,Fu Xiao,Yuan YinyinORCID,Harrington Heather A.,Swanton CharlesORCID,Byrne Helen M.ORCID,Sahai ErikORCID

Abstract

AbstractExtracellular matrix (ECM) organization influences cancer development and progression. It modulates the invasion of cancer cells and can hinder the access of immune cells to cancer cells. Effective quantification of ECM architecture and its relationship to the position of different cell types is, therefore, important when investigating the role of ECM in cancer development. Using topological data analysis (TDA), particularly persistent homology and Dowker persistent homology, we develop a novel analysis pipeline for quantifying ECM architecture, spatial patterns of cell positions, and the spatial relationships between distinct constituents of the tumour microenvironment. We apply the pipeline to 44 surgical specimens of lung adenocarcinoma from the lung TRACERx study stained with picrosirius red and haematoxylin. We show that persistent homology effectively encodes the architectural features of the tumour microenvironment. Inference using pseudo-time analysis and spatial mapping to centimetre scale tissues suggests a gradual and progressive route of change in ECM architecture, with two different end states. Dowker persistent homology enables the analysis of spatial relationship between any pair of constituents of the tumour microenvironment, such as ECM, cancer cells, and leukocytes. We use Dowker persistent homology to quantify the spatial segregation of cancer and immune cells over different length scales. A combined analysis of both topological and non-topological features of the tumour microenvironment indicates that progressive changes in the ECM are linked to increased immune exclusion and reduced oxidative metabolism.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3