Experimental variables that impact outcomes inCaenorhabditis elegansaging stress response

Author:

Hull BradfordORCID,Irby Isabella M.ORCID,Miller Kayla M.ORCID,Anderson AllyORCID,Gardea Emily A.ORCID,Sutphin George L.ORCID

Abstract

AbstractCellular stress is a fundamental component of age-associated disease. Cells encounter various forms of stress – oxidative stress, protein misfolding, DNA damage, etc. – and respond by activating specific, well-defined stress response pathways. As we age, the burden of stress and resulting damage increases while our cells’ ability to deal with the consequences becomes diminished due to dysregulation of cellular stress response pathways. Many interventions that extend lifespan activate one or more stress response pathways or allow cells to maintain normal stress response later in life. The nematodeCaenorhabditis elegansis a commonly used model for both aging and stress response research. As such, stress response experiments are regularly conducted as part of studies focused on mechanisms of aging inC. elegans. However, experimental design across experiments in the field are highly variable, including stressor dose, age at exposure, culture type (liquid vs. solid), bacterial strain used as a food source, and environmental temperature. These differences can result in different experimental outcomes, making comparison of results between studies challenging. Here we evaluate several experimental variables that are variable in the published literature and find that each can meaningfully alter experimental outcomes for multiple stressors. Our goal is to raise awareness of the issue of experimental variability within the field and suggest a standardized experimental design to serve as a set of guidelines for future experiments. By adopting these guidelines as a starting point, and explicitly noting differences in specific experiments, we aim to promote rigor and reproducibility, ultimately fostering more interpretable and translatable outcomes in geroscience research.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3