A Genetic Screen for regulators of CNS morphology in Drosophila

Author:

Lacin Haluk,Zhu Yuqing,DiPaola Jose,Wilson Beth A,Zhu Yi,Skeath James B

Abstract

Despite increasing in mass approximately 100-fold during larval life, the Drosophila CNS maintains its characteristic form during this rapid growth phase. Dynamic interactions between the overlying basement membrane and underlying surface glia are known to regulate CNS structure in Drosophila, but the genes and pathways that establish and maintain CNS morphology during development remain poorly characterized. To identify genes that regulate CNS shape in Drosophila, we conducted an EMS-based, forward genetic screen of the second chromosome, uncovered 50 mutations that disrupt CNS structure, and mapped these alleles to 17 genes. Whole genome sequencing revealed the affected gene for all but one gene. Identified genes include well characterized regulators of tissue shape, like Laminin B1, viking, and Collagen 4a1, as well as characterized genes, such as Toll-2 and Rme-8, with no known role in regulating CNS structure. We also uncovered that papilin and dC1GalTA likely act in the same pathway to regulate CNS structure and found that a glucuronosyltransferase that regulates Dystroglycan function in mammals is required to maintain CNS shape in Drosophila. Finally, we show that the senseless-2 transcription factor is expressed and functions specifically in surface glia found on peripheral nerves but not those on the CNS proper to govern CNS structure, identifying the first gene that functionally subdivides a glial subtype along the peripheral-central axis. Future work on these genes should help clarify the genetic mechanisms that ensure the homeostasis of CNS shape and form during development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3