Author:
Hadsund Johannes Thorling,Satława Tadeusz,Janusz Bartosz,Shan Lu,Zhou Li,Röttger Richard,Krawczyk Konrad
Abstract
AbstractNanobodies are a subclass of immunoglobulins, whose binding site consists of only one peptide chain, bestowing favorable biophysical properties. Recently, the first nanobody therapy was approved, paving the way for further clinical applications of this antibody format. Further development of nanobody-based therapeutics could be streamlined by computational methods. One of such methods is infilling - positional prediction of biologically feasible mutations in nanobodies. Being able to identify possible positional substitutions based on sequence context, facilitates functional design of such molecules. Here we present nanoBERT, a nanobody-specific transformer to predict amino acids in a given position in a query sequence. We demonstrate the need to develop such machine-learning based protocol as opposed to gene-specific positional statistics since appropriate genetic reference is not available. We benchmark nanoBERT with respect to human-based language models and ESM-2, demonstrating the benefit for domain-specific language models. We also demonstrate the benefit of employing nanobody-specific predictions for fine-tuning on experimentally measured thermostability dataset. We hope that nanoBERT will help engineers in a range of predictive tasks for designing therapeutic nanobodies.Availabilityhttps://huggingface.co/NaturalAntibody/
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献