nanoBERT: A deep learning model for gene agnostic navigation of the nanobody mutational space

Author:

Hadsund Johannes Thorling,Satława Tadeusz,Janusz Bartosz,Shan Lu,Zhou Li,Röttger Richard,Krawczyk Konrad

Abstract

AbstractNanobodies are a subclass of immunoglobulins, whose binding site consists of only one peptide chain, bestowing favorable biophysical properties. Recently, the first nanobody therapy was approved, paving the way for further clinical applications of this antibody format. Further development of nanobody-based therapeutics could be streamlined by computational methods. One of such methods is infilling - positional prediction of biologically feasible mutations in nanobodies. Being able to identify possible positional substitutions based on sequence context, facilitates functional design of such molecules. Here we present nanoBERT, a nanobody-specific transformer to predict amino acids in a given position in a query sequence. We demonstrate the need to develop such machine-learning based protocol as opposed to gene-specific positional statistics since appropriate genetic reference is not available. We benchmark nanoBERT with respect to human-based language models and ESM-2, demonstrating the benefit for domain-specific language models. We also demonstrate the benefit of employing nanobody-specific predictions for fine-tuning on experimentally measured thermostability dataset. We hope that nanoBERT will help engineers in a range of predictive tasks for designing therapeutic nanobodies.Availabilityhttps://huggingface.co/NaturalAntibody/

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3