Abstract
AbstractBackgroundTo create an opportunistic screening strategy by multitask deep learning methods to stratify prediction for coronary artery calcium (CAC) and associated cardiovascular risk with frontal chest x-rays (CXR) and minimal data from electronic health records (EHR).MethodsIn this retrospective study, 2,121 patients with available computed tomography (CT) scans and corresponding CXR images were collected internally (Mayo Enterprise) with calculated CAC scores binned into 3 categories (0, 1-99, and 100+) as ground truths for model training. Results from the internal training were tested on multiple external datasets (domestic (EUH) and foreign (VGHTPE)) with significant racial and ethnic differences and classification performance was compared.FindingsClassification performance between 0, 1-99, and 100+ CAC scores performed moderately on both the internal test and external datasets, reaching average f1-score of 0.66 for Mayo, 0.62 for EUH and 0.61 for VGHTPE. For the clinically relevant binary task of 0 vs 400+ CAC classification, the performance of our model on the internal test and external datasets reached an average AUCROC of 0.84.InterpretationThe fusion model trained on CXR performed better (0.84 average AUROC on internal and external dataset) than existing state-of-the-art models on predicting CAC scores only on internal (0.73 AUROC), with robust performance on external datasets. Thus, our proposed model may be used as a robust, first-pass opportunistic screening method for cardiovascular risk from regular chest radiographs. For community use, trained model and the inference code can be downloaded with an academic open-source license fromhttps://github.com/jeong-jasonji/MTL_CAC_classification.FundingThe study was partially supported by National Institute of Health 1R01HL155410-01A1 award.
Publisher
Cold Spring Harbor Laboratory