Obesity Facilitates Sex-Specific Improvement In Cognition And Neuronal Function In A Rat Model Of Alzheimer’s Disease

Author:

Lai Aaron Y.ORCID,Almanza Dustin Loren V.,Ribeiro Jessica A.,Hill Mary E.,Mandrozos Matthew,Koletar Margaret M.ORCID,Stefanovic BojanaORCID,McLaurin JoAnneORCID

Abstract

ABSTRACTObesity reduces or increases the risk of developing Alzheimer’s disease (AD) depending on whether it is assessed in mid-life or late-life. There is currently no consensus on the relationship between obesity and AD or the mechanism or their interaction. Here, we aim to differentiate the cause-and-effect relationship between obesity and AD in a controlled rat model of AD. We induced obesity in 9-month-old TgF344-AD rats, that is pathology-load wise similar to early symptomatic phase of human AD. To more accurately model human obesity, we fed both TgF344-AD and non-transgenic littermates a varied high-carbohydrate-high-fat diet consisting of human food for 3 months. Obesity increased overall glucose metabolism and slowed cognitive decline in TgF344-AD rats, specifically executive function, without affecting non-transgenic rats. Pathological analyses of prefrontal cortex and hippocampus showed that obesity in TgF344-AD rats produced varied effects, with increased density of myelin and oligodendrocytes, lowered density and activation of microglia that we propose contributes to the cognitive improvement. However, obesity also decreased neuronal density, and promoted deposition of amyloid-beta plaques and tau inclusions. After 6 months on the high-carbohydrate-high-fat diet, detrimental effects on density of neurons, amyloid-beta plaques, and tau inclusions persisted while the beneficial effects on myelin, microglia, and cognitive functions remained albeit with a lower effect size. By examining the effect of sex, we found that both beneficial and detrimental effects of obesity were stronger in female TgF344-AD rats indicating that obesity during early symptomatic phase of AD is protective in females.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3