Chronic Pod-Mod E-Cigarette Aerosol Exposure Induces Aortic Dysfunction in Hypercholesterolemic Mice: Role of Oxidative Stress and Inflammation

Author:

Farra Yasmeen M.,Matz Jacqueline,Wilker Hannah,Kim Hannah,Rivera CristobalORCID,Vlahos John,Ramkhelawon BhamaORCID,Oakes Jessica M.,Bellini ChiaraORCID

Abstract

ABSTRACTObjectiveElectronic (e-)cigarettes are the most used tobacco product amongst youth, and adult smokers favor e-cigarettes over approved cessations aids. Despite the lower perceived harm of vaping compared to smoking, inhalation of e-cigarette aerosol elicits cardiovascular responses that may lead to permanent injury when repeated over time. We thus aimed to infer the long-term outcomes of vaping on the function and structure of the aorta and shed light on the underlying cellular and molecular mechanisms.Approach and ResultsWe exposed female hypercholesterolemic mice to either pod-mod e-cigarette aerosol or room air daily for 24 weeks. Chronic inhalation of e-cigarette aerosol triggered accumulation of inflam-matory signals systemically and within aortic tissues, as well as T lymphocyte accrual in the aortic wall. Reduced eNOS expression and enhanced ROS production following eNOS uncoupling and NADPH oxi-dase activation curbed nitric oxide availability in the aorta of mice exposed to e-cigarette aerosol, impairing the endothelium-dependent vasodilatation that regulates blood flow distribution. Inhalation of e-cigarette aerosol thickened and stiffened aortic tissues via collagen deposition and remodeling, hindering the storage of elastic energy and limiting the cyclic distensibility that enables the aorta to function as a pressure reservoir. These effects combined contributed to raising systolic and pulse pressure above control levels.ConclusionsChronic inhalation of aerosol from pod-mod e-cigarettes promotes oxidative stress, inflammation, and fibrosis within aortic tissues, significantly impairing passive and vasoactive aortic functions. This evidence provides new insights on the biological processes that increase the risk for adverse cardio-vascular events as a result of pod-mod e-cigarette vaping.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3