Fine-Grained Forecasting of COVID-19 Trends at the County Level in the United States

Author:

Song Tzu-Hsi,Clemente Leonardo,Pan Xiang,Jang Junbong,Santillana Mauricio,Lee KwonmooORCID

Abstract

AbstractThe novel coronavirus (COVID-19) pandemic, first identified in Wuhan China in December 2019, has profoundly impacted various aspects of daily life, society, healthcare systems, and global health policies. There have been more than half a billion human infections and more than 6 million deaths globally attributable to COVID-19. Although treatments and vaccines to protect against COVID-19 are now available, people continue being hospitalized and dying due to COVID-19 infections. Real-time surveillance of population-level infections, hospitalizations, and deaths has helped public health officials better allocate healthcare resources and deploy mitigation strategies. However, producing reliable, real-time, short-term disease activity forecasts (one or two weeks into the future) remains a practical challenge. The recent emergence of robust time-series forecasting methodologies based on deep learning approaches has led to clear improvements in multiple research fields. We propose a recurrent neural network model named Fine-Grained Infection Forecast Network (FIGI-Net), which utilizes a stacked bidirectional LSTM structure designed to leverage fine-grained county-level data, to produce daily forecasts of COVID-19 infection trends up to two weeks in advance. We show that FIGI-Net improves existing COVID-19 forecasting approaches and delivers accurate county-level COVID-19 disease estimates. Specifically, FIGI-Net is capable of anticipating upcoming sudden changes in disease trends such as the onset of a new outbreak or the peak of an ongoing outbreak, a skill that multiple existing state-of-the-art models fail to achieve. This improved performance is observed across locations and periods. Our enhanced forecasting methodologies may help protect human populations against future disease outbreaks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3