Artificial intelligence–enabled electrocardiogram for mortality and cardiovascular risk estimation: An actionable, explainable and biologically plausible platform

Author:

Sau Arunashis,Pastika Libor,Sieliwonczyk Ewa,Patlatzoglou Konstantinos,Ribeiro Antonio H.,McGurk Kathryn A.,Zeidaabadi Boroumand,Zhang Henry,Macierzanka Krzysztof,Mandic Danilo,Sabino Ester,Giatti Luana,Barreto Sandhi M,do Valle Camelo Lidyane,Tzoulaki Ioanna,O’Regan Declan P.,Peters Nicholas S.,Ware James S.,Ribeiro Antonio Luiz P.,Kramer Daniel B.,Waks Jonathan W.,Ng Fu Siong

Abstract

AbstractBackground and AimsArtificial intelligence-enhanced electrocardiograms (AI-ECG) can be used to predict risk of future disease and mortality but has not yet been adopted into clinical practice. Existing model predictions lack actionability at an individual patient level, explainability and biological plausibility. We sought to address these limitations of previous AI-ECG approaches by developing the AI-ECG risk estimator (AIRE) platform.Methods and ResultsThe AIRE platform was developed in a secondary care dataset of 1,163,401 ECGs from 189,539 patients, using deep learning with a discrete-time survival model to create a subject-specific survival curve using a single ECG. Therefore, AIRE predicts not only risk of mortality, buttime-to-mortality. AIRE was validated in five diverse, transnational cohorts from the USA, Brazil and the UK, including volunteers, primary care and secondary care subjects. AIRE accurately predicts risk of all-cause mortality (C-index 0.775 (0.773-0.776)), cardiovascular (CV) death 0.832 (0.831-0.834), non-CV death (0.749 (0.747-0.751)), future ventricular arrhythmia (0.760 (0.756-0.763)), future atherosclerotic cardiovascular disease (0.696 (0.694-0.698)) and future heart failure (0.787 (0.785-0.889))). Through phenome- and genome-wide association studies, we identified candidate biological pathways for the prediction of increased risk, including changes in cardiac structure and function, and genes associated with cardiac structure, biological aging and metabolic syndrome.ConclusionAIRE is an actionable, explainable and biologically plausible AI-ECG risk estimation platform that has the potential for use worldwide across a wide range of clinical contexts for short- and long-term risk estimation.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3