Abstract
AbstractDeep learning tools that predict peptide binding by major histocompatibility complex (MHC) proteins play an essential role in developing personalized cancer immunotherapies and vaccines. In order to ensure equitable health outcomes from their application, MHC binding prediction methods must work well across the vast landscape of MHC alleles. Here we show that there are alarming differences across individuals in different racial and ethnic groups in how much binding data are associated with their MHC alleles. We introduce a machine learning framework to assess the impact of this data disparity for predicting binding for any given MHC allele, and apply it to develop a state-of-the-art MHC binding prediction model that additionally provides per-allele performance estimates. We demonstrate that our MHC binding model successfully mitigates much of the data disparities observed across racial groups. To address remaining inequities, we devise an algorithmic strategy for targeted data collection. Our work lays the foundation for further development of equitable MHC binding models for use in personalized immunotherapies.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Medical artificial intelligence should do no harm;Nature Reviews Electrical Engineering;2024-04-12