Towards Equitable MHC Binding Predictions: Computational Strategies to Assess and Reduce Data Bias

Author:

Glynn Eric,Ghersi DarioORCID,Singh Mona

Abstract

AbstractDeep learning tools that predict peptide binding by major histocompatibility complex (MHC) proteins play an essential role in developing personalized cancer immunotherapies and vaccines. In order to ensure equitable health outcomes from their application, MHC binding prediction methods must work well across the vast landscape of MHC alleles. Here we show that there are alarming differences across individuals in different racial and ethnic groups in how much binding data are associated with their MHC alleles. We introduce a machine learning framework to assess the impact of this data disparity for predicting binding for any given MHC allele, and apply it to develop a state-of-the-art MHC binding prediction model that additionally provides per-allele performance estimates. We demonstrate that our MHC binding model successfully mitigates much of the data disparities observed across racial groups. To address remaining inequities, we devise an algorithmic strategy for targeted data collection. Our work lays the foundation for further development of equitable MHC binding models for use in personalized immunotherapies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Medical artificial intelligence should do no harm;Nature Reviews Electrical Engineering;2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3