Catabolic pathway acquisition by soil pseudomonads readily enables growth with salicyl alcohol but does not affect colonization ofPopulusroots

Author:

Christel StephanORCID,Carrell Alyssa A.ORCID,Burdick Leah H.,Villalobos Solis Manuel I.ORCID,Abraham Paul E.ORCID,Jawdy Sara S.ORCID,Chaves Julie E.ORCID,Engle Nancy L.ORCID,Berhane Timkhite-KuluORCID,Yao TaoORCID,Chen Jin-GuiORCID,Muchero WellingtonORCID,Tschaplinski Timothy J.ORCID,Cregger Melissa A.ORCID,Michener Joshua K.ORCID

Abstract

ABSTRACTHorizontal gene transfer (HGT) is a fundamental evolutionary process that plays a key role in bacterial evolution. The likelihood of a successful transfer event is expected to depend on the precise balance of costs and benefits resulting from pathway acquisition. Most experimental analyses of HGT have focused on phenotypes that have large fitness benefits under appropriate selective conditions, such as antibiotic resistance. However, many examples of HGT involve phenotypes that are predicted to provide smaller benefits, such as the ability to catabolize additional carbon sources. We have experimentally reproduced one such HGT event in the laboratory, studying the effects of transferring a pathway for catabolism of the plant-derived aromatic compound salicyl alcohol into soil isolates from thePseudomonasgenus. We find that pathway acquisition enables rapid catabolism of salicyl alcohol with only minor disruptions to existing metabolic and regulatory networks of the new host. However, this new catabolic potential does not confer a measurable fitness advantage during competitive growth in the rhizosphere. We conclude that the phenotype of salicyl alcohol catabolism is readily transferred by HGT but is selectively neutral under environmentally-relevant conditions. We propose that this condition is common and that HGT of many pathways will be self-limiting, because the selective benefits are small and negative frequency-dependent.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3