Abstract
AbstractConstitutive Photomorphogenesis Protein 1 homolog (COP1) is a conserved E3 ligase with key roles in several biological systems. Prior work in hepatocyte derived tumors categorized COP1 as an oncogene but its role in untransformed hepatocytes remains largely unexplored. Here we have investigated the role of COP1 in primary human hepatocytes as well as in two transformed hepatocyte models, HepG2 and HuH-7 cells. Contrary to a previous report, COP1 suppression via siRNA had no noticeable impact on HepG2 and HuH-7 proliferation and was associated with contrasting rather than congruent transcriptome changes. Clustering analyses identified patterns indicative of perturbed metabolism in primary hepatocytes and HepG2 cells whereas patterns pointed to cell proliferation impacts in HuH-7 cells. In HepG2 and primary hepatocytes, COP1 suppression reduced the expression important hepatic regulators and markers, which could be restored by the introduction of a siRNA resistant COP1 transgene. COP1 downregulation reduced hepatic nuclear factor-4 alpha (HNF4A) abundance and function, as assessed by lower abundance of key HNF4A targets and reduced APOB secretion. HNF4A restoration partially rescued COP1 silencing in HepG2 cells. This study identifies COP1 as a key regulator of hepatocyte function, in part via HNF4A. COP1 was required to maintain HNF4A abundance and function in primary hepatocytes and in HepG2 cells, but not in HuH-7 cells. Lastly, by demonstrating contrasting roles of COP1 in HuH-7 and HepG2 cells, our findings also challenge previous work linking COP1 to hepatic tumorigenesis.
Publisher
Cold Spring Harbor Laboratory