Generative AI for Cell Type-Specific Fluorescence Image Generation of hPSC-derived Cardiac Organoid

Author:

Kandula Arun Kumar Reddy,Phamornratanakun Tanakit,Gomez Angello Huerta,El-Mokahal Marcel,Ma Zhen,Feng Yunhe,Yang Huaxiao

Abstract

AbstractHuman pluripotent stem cell (hPSC)-derived cardiac organoid is the most recent three-dimensional tissue structure that mimics the structure and functionality of the human heart and plays a pivotal role in modeling heart development and disease. The hPSC-derived cardiac organoids are commonly characterized by bright-field microscopic imaging for tracking daily organoid differentiation and morphology formation. Although the brightfield microscope provides essential information about hPSC- derived cardiac organoids, such as morphology, size, and general structure, it does not extend our understanding of cardiac organoids on cell type-specific distribution and structure. Then, fluorescence microscopic imaging is required to identify the specific cardiovascular cell types in the hPSC-derived cardiac organoids by fluorescence immunostaining fixed organoid samples or fluorescence reporter imaging of live organoids. Both approaches require extra steps of experiments and techniques and do not provide general information on hPSC-derived cardiac organoids from different batches of differentiation and characterization, which limits the biomedical applications of hPSC-derived cardiac organoids. This research addresses this limitation by proposing a comprehensive workflow for colorizing phase contrast images of cardiac organoids from brightfield microscopic imaging using conditional Generative Adversarial Networks (GANs) to provide cardiovascular cell type-specific information in hPSC-derived cardiac organoids. By infusing these phase contrast images with accurate fluorescence colorization, our approach aims to unlock the hidden wealth of cell type, structure, and further quantifications of fluorescence intensity and area, for better characterizing hPSC-derived cardiac organoids.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3