SEETrials: Leveraging Large Language Models for Safety and Efficacy Extraction in Oncology Clinical Trials

Author:

Lee Kyeryoung,Paek Hunki,Huang Liang-Chin,Hilton C Beau,Datta Surabhi,Higashi Josh,Ofoegbu Nneka,Wang Jingqi,Rubinstein Samuel M,Cowan Andrew J,Kwok Mary,Warner Jeremy L.,Xu Hua,Wang Xiaoyan

Abstract

ABSTRACTBackgroundInitial insights into oncology clinical trial outcomes are often gleaned manually from conference abstracts. We aimed to develop an automated system to extract safety and efficacy information from study abstracts with high precision and fine granularity, transforming them into computable data for timely clinical decision-making.MethodsWe collected clinical trial abstracts from key conferences and PubMed (2012-2023). The SEETrials system was developed with four modules: preprocessing, prompt modeling, knowledge ingestion and postprocessing. We evaluated the system’s performance qualitatively and quantitatively and assessed its generalizability across different cancer types— multiple myeloma (MM), breast, lung, lymphoma, and leukemia. Furthermore, the efficacy and safety of innovative therapies, including CAR-T, bispecific antibodies, and antibody-drug conjugates (ADC), in MM were analyzed across a large scale of clinical trial studies.ResultsSEETrials achieved high precision (0.958), recall (sensitivity) (0.944), and F1 score (0.951) across 70 data elements present in the MM trial studies Generalizability tests on four additional cancers yielded precision, recall, and F1 scores within the 0.966-0.986 range. Variation in the distribution of safety and efficacy-related entities was observed across diverse therapies, with certain adverse events more common in specific treatments. Comparative performance analysis using overall response rate (ORR) and complete response (CR) highlighted differences among therapies: CAR-T (ORR: 88%, 95% CI: 84-92%; CR: 95%, 95% CI: 53-66%), bispecific antibodies (ORR: 64%, 95% CI: 55-73%; CR: 27%, 95% CI: 16-37%), and ADC (ORR: 51%, 95% CI: 37-65%; CR: 26%, 95% CI: 1-51%). Notable study heterogeneity was identified (>75%I2heterogeneity index scores) across several outcome entities analyzed within therapy subgroups.ConclusionSEETrials demonstrated highly accurate data extraction and versatility across different therapeutics and various cancer domains. Its automated processing of large datasets facilitates nuanced data comparisons, promoting the swift and effective dissemination of clinical insights.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3