Abstract
AbstractThe aperiodic (1/f-like) component of electrophysiological data - whereby power systematically decreases with increasing frequency, as quantified by the aperiodic exponent - has been shown to differentiate sleep stages. Earlier work, however, has typically focused on measuring the aperiodic exponent across a narrow frequency range. In this work, we sought to further investigate aperiodic activity during sleep by extending these analyses across broader frequency ranges and considering alternate model definitions. This included measuring ‘knees’ in the aperiodic component, which reflect bends in the power spectrum, indicating a change in the exponent. We also sought to evaluate the temporal dynamics of aperiodic activity during sleep. To do so, we analyzed data from two sources: intracranial EEG (iEEG) from 106 epilepsy patients and high-density EEG from 17 healthy individuals, and measured aperiodic activity, explicitly comparing different frequency ranges and model forms. In doing so, we find that fitting broadband aperiodic models and incorporating a ‘knee’ feature effectively captures sleep-stage-dependent differences in aperiodic activity as well as temporal dynamics that relate to sleep stage transitions and responses to external stimuli. In particular, the knee parameter shows stage-specific variation, suggesting an interpretation of varying timescales across sleep stages. These results demonstrate that examining broader frequency ranges with the more complex aperiodic models reveals novel insights and interpretations for understanding aperiodic neural activity during sleep.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献