Exploring the Categorical Nature of Colour Perception: Insights from Artificial Networks

Author:

Akbarinia ArashORCID

Abstract

AbstractThis study delves into the categorical aspects of colour perception, employing the odd-one-out paradigm on artificial neural networks. We reveal a significant alignment between human data and unimodal vision networks (e.g., ImageNet object recognition). Vision-language models (e.g., CLIP text-image matching) account for the remaining unexplained data even in non-linguistic experiments. These results suggest that categorical colour perception is a language-independent representation, albeit partly shaped by linguistic colour terms during its development. Exploring the ubiquity of colour categories in Taskonomy unimodal vision networks highlights the task-dependent nature of colour categories, predominantly in semantic and 3D tasks, with a notable absence in low-level tasks. To explain this difference, we analysed kernels’ responses before the winnertaking-all, observing that networks with mismatching colour categories align in continuous representations. Our findings quantify the dual influence of visual signals and linguistic factors in categorical colour perception, thereby formalising a harmonious reconciliation of the universal and relative debates.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. Deep reconciliation of categorical colour perception;Perception,2023

2. Arash Akbarinia . Osculari: a Python package to explore artificial neural networks with psychophysical experiments, December 2023.

3. Color conversion in deep autoen-coders;Journal of Perceptual Imaging,2021

4. Contrast sensitivity function in deep networks;Neural Networks,2023

5. Guillaume Alain and Yoshua Bengio . Understanding intermediate layers using linear classifier probes. In International Conference on Learning Representations, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3