Early life adversity drives sex-dependent changes in 5-mC DNA methylation of parvalbumin cells in the prefrontal cortex in rats

Author:

Noel Emma S.,Chen Alissa,Peña Yanevith A.,Honeycutt Jennifer A.ORCID

Abstract

ABSTRACTEarly life adversity (ELA) can result in increased risk for developing affective disorders, such as anxiety or depression, later in life, with women showing increased risk. Interactions between an individual’s genes and their environment play key roles in producing, as well as mitigating, later life neuropathology. Our current understanding of the underlying epigenomic drivers of ELA associated anxiety and depression are limited, and this stems in part from the complexity of underlying biochemical processes associated with how early experiences shapes later life behavior. Epigenetic alterations, or experience-driven modifications to DNA, can be leveraged to understand the interplay between genes and the environment. The present study characterized DNA methylation patterning, assessed via evaluation of 5-methylcytosine (5-mC), following ELA in a Sprague Dawley rat model of ELA induced by early caregiver deprivation. This study utilized maternal separation to investigate sex- and age-specific outcomes of ELA on epigenetic patterning in parvalbumin (PV)-containing interneurons in the prefrontal cortex (PFC), a subpopulation of inhibitory neurons which are associated with ELA and affective dysfunction. While global analysis of 5-mC methylation and CpG site specific pyrosequencing of the PV promoter, Pvalb, showed no obvious effects of ELA, when analyses were restricted to assessing 5-mC intensity in colocalized PV cells, there were significant sex and age dependent effects. We found that ELA leads sex-specific changes in PV cell counts, and that cell counts can be predicted by 5-mC intensity, with males and females showing distinct patterns of methylation and PV outcomes. ELA also produced sex-specific effects in corticosterone reactivity, with juvenile females showing a blunted stress hormone response compared to controls. Overall, ELA led to a sex-specific developmental shift in PV profile, which is comparable to profiles that are seen at a later developmental timepoint, and this shift may be mediated in part by epigenomic alterations driven by altered DNA methylation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3