APNet, an explainable sparse deep learning model to discover differentially active drivers of severe COVID-19

Author:

Gavriilidis George I.ORCID,Vasileiou VasileiosORCID,Dimitsaki StellaORCID,Karakatsoulis GeorgeORCID,Giannakakis AntonisORCID,Pavlopoulos Georgios A.ORCID,Psomopoulos FotisORCID

Abstract

AbstractMotivationComputational analyses of plasma proteomics provide translational insights into complex diseases such as COVID-19 by revealing molecules, cellular phenotypes, and signaling patterns that contribute to unfavorable clinical outcomes. Currentin silicoapproaches dovetail differential expression, biostatistics, and machine learning, but often overlook nonlinear proteomic dynamics, like post-translational modifications, and provide limited biological interpretability beyond feature ranking.ResultsWe introduce APNet, a novel computational pipeline that combines differential activity analysis based on SJARACNe co-expression networks with PASNet, a biologically-informed sparse deep learning model to perform explainable predictions for COVID-19 severity. The APNet driver-pathway network ingests co-expression and classification weights to aid result interpretation and hypothesis generation. APNet outperforms alternative models in patient classification across three COVID-19 proteomic datasets, identifying predictive drivers and pathways, including some confirmed in single-cell omics and highlighting under-explored biomarker circuitries in COVID-19.Availability and ImplementationAPNet’s R, Python scripts and Cytoscape methodologies are available athttps://github.com/BiodataAnalysisGroup/APNetContactggeorav@certh.grSupplementary informationSupplementary information can be accessed in Zenodo (10.5281/zenodo.10438830).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3