Mitigating reactive oxygen species production and increasing gel porosity improves lymphocyte motility and fibroblast spreading in photocrosslinked gelatin-thiol hydrogels

Author:

Ozulumba TochukwuORCID,Zatorski Jonathan M.ORCID,Arneja AbhinavORCID,Hammel Jennifer H.ORCID,Braciale Thomas J.ORCID,Luckey Chance J.ORCID,Munson Jennifer M.ORCID,Pompano Rebecca R.ORCID

Abstract

ABSTRACTOn-chip 3D culture systems that incorporate immune cells such as lymphocytes and stromal cells are needed to model immune organs in engineered systems such as organs-on-chip. Photocrosslinking is a useful tool for creating such immune-competent hydrogel cultures with spatial cell organization. However, loss of viability and motility in photocrosslinked gels can limit its utility, especially when working with fragile primary cells. We hypothesized that optimizing photoexposure-induced ROS production, hydrogel porosity or a combination of both factors was necessary to sustain cell viability and motility during culture in photocrosslinked gelatin-thiol (GelSH) hydrogels. Jurkat T cells, primary human CD4+ T cells and human lymphatic fibroblasts were selected as representative lymphoid immune cells to test this hypothesis. Direct exposure of these cells to 385 nm light and LAP photoinitiator dramatically increased ROS levels. Pretreatment with an antioxidant, ascorbic acid (AA), protected the cells from light + LAP-induced ROS and was non-toxic at optimized doses. Furthermore, scanning electron microscopy showed that native GelSH hydrogels had limited porosity, and that adding collagen to GelSH precursor before crosslinking markedly increased gel porosity. Next, we tested the impact of AA pretreatment and increasing gel porosity, alone or in combination, on cell viability and function in 3D GelSH hydrogel cultures. Increasing gel porosity, rather than AA pretreatment, was more critical for rescuing viability of Jurkat T cells and spreading of human lymphatic fibroblasts in GelSH-based gels, but both factors improved the motility of primary human CD4+ T cells. Increased porosity enabled formation of spatially organized co-cultures of primary human CD4+ T cells and human lymphatic fibroblasts in photo-crosslinked gels in a multi-lane microfluidic chip, towards modeling the lymphoid organ microenvironment. Some optimization is still needed to improve homogeneity between regions on the chip. These findings will enable researchers utilizing photocrosslinking methods to develop immunocompetent 3D culture models that support viability and function of sensitive lymphoid cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3