Global view of domain-specific O-linked mannose glycosylation in glycoengineered cells

Author:

Povolo LorenzoORCID,Tian WeihuaORCID,Vakhrushev Sergey Y.ORCID,Halim AdnanORCID

Abstract

AbstractProtein O-linked mannose (O-Man) glycosylation is an evolutionary conserved post-translational modification (PTM) that fulfills important biological roles during embryonic development. Three non-redundant enzyme families, POMT1/POMT2, TMTC1-4 and TMEM260, selectively coordinate the initiation of protein O-Man glycosylation on distinct classes of transmembrane proteins, including α-dystroglycan, cadherins and plexin receptors. However, a systematic investigation of their substrate specificities is lacking, in part due to the ubiquitous expression of O-Man glycosyltransferases in cells, which precludes analysis of pathway-specific O-Man glycosylation on a proteome-wide scale. Here, we apply a targeted workflow for membrane glycoproteomics across five human cell lines to extensively map O-Man substrates and genetically deconstruct O-Man initiation by individual and combinatorial knock-out (KO) of O-Man glycosyltransferase genes. We established a human cell library for analysis of substrate specificities of individual O-Man initiation pathways by quantitative glycoproteomics. Our results identify 180 O-Man glycoproteins, demonstrate new protein targets for the POMT1/POMT2 pathway and show that TMTC1-4 and TMEM260 pathways widely target distinct Ig-like protein domains of plasma membrane proteins involved in cell-cell and cell-extracellular matrix interactions. The identification of O-Man on Ig-like folds adds further knowledge on the emerging concept of domain-specific O-Man glycosylation which opens for functional studies of O-Man glycosylated adhesion molecules and receptors.

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. Protein O-mannosylation: conserved from bacteria to humans;Glycobiology [Internet],2009

2. Protein glycosylation, conserved from yeast to man: A model organism helps elucidate congenital human diseases;Angew Chemie - Int Ed [Internet],2006

3. O-mannosyl glycans in mammals;Biochim Biophys Acta [Internet],1999

4. Toward an experimental system for the examination of protein mannosylation in Actinobacteria;Glycobiology [Internet],2023

5. The PMT gene family: Protein O-glycosylation in saccharomyces cerevisiae is vital;EMBO J [Internet],1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3