Deep Learning Outperforms Classical Machine Learning Methods in Pediatric Brain Tumor Classification through Mass Spectra

Author:

Santos Bezerra Thais Maria,Silva de Deus Matheus,Cavalaro Felipe,Ribeiro Denise,Seidinger Ana Luiza,Cardinalli Izilda Aparecida,de Melo Porcari Andreia,de Souza Queiroz Luciano,Pedrini Helio,Meidanis Joao

Abstract

AbstractPediatric brain tumors are the most common cause of death among all childhood cancers and surgical resection usually is the first step in disease management. During surgery, it is important to perform safe gross resection of tumors, retaining as much brain tissue as possible. Therefore, appropriate resection margin delineation is extremely relevant.Currently available methods for tissue analysis have limited precision, are time-consuming, and often require multiple invasive procedures. Our main goal is to test whether machine learning techniques are capable of classifying the pediatric brain tissue chemical profile generated by DESI-MSI, which is mainly lipidic, into normal or abnormal tissue and into low- and high-grade malignancy subareas within each sample.Our experiments show that deep learning methods outperform classical machine learning methods in the task of classifying brain tissue from DESI-MSI mass spectra, both in normal versus abnormal tissue, and, for malignant tissues, in low-grade versus high-grade malignancy.Our conclusion are based on the analysis of 34,870 annotated spectra, obtained from the neoplastic and non-neoplastic microanatomical stratification of individual samples from 116 pediatric patients who underwent brain tumor surgical resection at the Boldrini Children’s Center between 2000 and 2020. Support Vector Machines, Random, Forests, and Least Absolute Shrinkage and Selection Operator (LASSO) were among the classical machine learning techniques evaluated.

Publisher

Cold Spring Harbor Laboratory

Reference23 articles.

1. massNet: integrated processing and classification of spatially resolved mass spectrometry data using deep learning for rapid tumor delineation;Bioinformatics,2022

2. Deep learning for tumor classification in imaging mass spectrometry;Bioinformatics,2017

3. Lipid metabolic reprogramming in cancer cells

4. MSiReader v1.0: Evolving Open-Source Mass Spectrometry Imaging Software for Targeted and Untargeted Analyses

5. Henrik Brink , Joseph Richards , and Mark Fetherolf . Real-World Machine Learning. Manning Publications Co., USA, 1st edition, 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3