Author:
Yang Chunhui,Coalson Timothy S.,Smith Stephen M.,Elam Jennifer S.,Van Essen David C.,Glasser Matthew F.
Abstract
AbstractFunctional magnetic resonance imaging (fMRI) data are dominated by noise and artifacts, with only a small fraction of the variance relating to neural activity. Temporal independent component analysis (tICA) is a recently developed method that enables selective denoising of fMRI artifacts related to physiology such as respiration. However, an automated and easy to use pipeline for tICA has not previously been available; instead, two manual steps have been necessary: 1) setting the group spatial ICA dimensionality after MELODIC’s Incremental Group-PCA (MIGP) and 2) labeling tICA components as artifacts versus signals. Moreover, guidance has been lacking as to how many subjects and timepoints are needed to adequately re-estimate the temporal ICA decomposition and what alternatives are available for smaller groups or even individual subjects. Here, we introduce a nine-step fully automated tICA pipeline which removes global artifacts from fMRI dense timeseries after sICA+FIX cleaning and MSMAll alignment driven by functionally relevant areal features. Additionally, we have developed an automated “reclean” Pipeline for improved spatial ICA (sICA) artifact removal. Two major automated components of the pipeline are 1) an automatic group spatial ICA (sICA) dimensionality selection for MIGP data enabled by fitting multiple Wishart distributions; 2) a hierarchical classifier to distinguish group tICA signal components from artifactual components, equipped with a combination of handcrafted features from domain expert knowledge and latent features obtained via self-supervised learning on spatial maps. We demonstrate that the dimensionality estimated for the MIGP data from HCP Young Adult 3T and 7T datasets is comparable to previous manual tICA estimates, and that the group sICA decomposition is highly reproducible. We also show that the tICA classifier achieved over 0.98 Precision-Recall Area Under Curve (PR-AUC) and that the correctly classified components account for over 95% of the tICA-represented variance on multiple held-out evaluation datasets including the HCP-Young Adult, HCP-Aging and HCP-Development datasets under various settings. Our automated tICA pipeline is now available as part of the HCP pipelines, providing a powerful and user-friendly tool for the neuroimaging community.
Publisher
Cold Spring Harbor Laboratory