Aberrant activation of wound healing programs within the metastatic niche facilitates lung colonization by osteosarcoma cells

Author:

Reinecke James B.,Gross Amy C.,Cam Maren,Garcia Leyre Jimenez,Cannon Matthew V.,Dries Ruben,Gryder Berkley E.,Roberts Ryan D.ORCID

Abstract

AbstractPurposeLung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. This study delineates how osteosarcoma cells educate the lung microenvironment during metastatic progression.Experimental designUsing single-cell transcriptomics (scRNA-seq), we characterized genome– and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multi-parameter immunofluorescence. We evaluated the ability of nintedanib to impair metastatic colonization and prevent osteosarcoma-induced education of the lung microenvironment in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models.ResultsOsteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. scRNA-seq demonstrated that the surrounding lung stroma adopts a chronic, non-resolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, metastasis-associated lung demonstrated marked fibrosis, likely due to the accumulation of pathogenic, pro-fibrotic, partially-differentiated epithelial intermediates. Inhibition of fibrotic pathways with nintedanib prevented metastatic progression in multiple murine and human xenograft models.ConclusionsOur work demonstrates that osteosarcoma cells co-opt fibrosis to promote metastatic outgrowth. When harmonized with data from adult epithelial cancers, our results support a generalized model wherein aberrant mesenchymal-epithelial interactions are critical for promoting lung metastasis. Adult epithelial carcinomas induce fibrotic pathways in normal lung fibroblasts, whereas osteosarcoma, a pediatric mesenchymal tumor, exhibits fibrotic reprogramming in response to the aberrant wound-healing behaviors of an otherwise normal lung epithelium, which are induced by tumor cell interactions.Statement of translational relevanceTherapies that block metastasis have the potential to save the majority of lives lost due to solid tumors. Disseminated tumor cells must educate the foreign, inhospitable microenvironments they encounter within secondary organs to facilitate metastatic colonization. Our study elucidated that disseminated osteosarcoma cells survive within the lung by co-opting and amplifying the lung’s endogenous wound healing response program. More broadly, our results support a model wherein mesenchymal-epithelial cooperation is a key driver of lung metastasis. Osteosarcoma, a pediatric mesenchymal tumor, undergoes lung epithelial induced fibrotic activation while also transforming normal lung epithelial cells towards a fibrosis promoting phenotype. Conversely, adult epithelial carcinomas activate fibrotic signaling in normal lung mesenchymal fibroblasts. Our data implicates fibrosis and abnormal wound healing as key drivers of lung metastasis across multiple tumor types that can be targeted therapeutically to disrupt metastasis progression.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3